X-ray absorption spectroscopy study of YMnO$_3$

D.-Y. Cho,1 J.-Y. Kim,2 J.-S. Ahn,3,1 H.-M. Park,4
K.-J. Noh,2 S.-J. Oh,1 H. Ishibashi,5 and S.-W. Cheong3

1School of Physics & Center for Strongly Correlated Material Research, Seoul National University, Seoul 151-747, Korea
2Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Korea
3Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
4Korea Research Institute of Standards and Science(KRISS), Yusong, 305-600, Korea
5Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Hexagonal perovskite YMnO$_3$ is a well-known material where both magnetism (AFM, $T_N \approx 80 \text{K}$) and ferroelectricity ($T_C \approx 900 \text{K}$) co-exist. These two properties were traditionally believed to have different origin, since the ferroelectricity usually occurs in nominal d^0 transition metal system whereas the magnetism does in compounds of occupied d− or f− electrons. To explain this coexistence in YMnO$_3$, Filippetti et al. [1] proposed a model which argues the empty $d_{3z^2-r^2}$ level along c-axis alone strongly hybridizes with p-orbital of apical oxygen. We present polarization-dependent XAS results to support their prediction with more implications.

The room-temperature X-ray fluorescence yield was measured at EPU6 beamline in Pohang Accelerator Laboratory. Single-crystalline YMnO$_3$ platelet was prepared carefully to be of axes [0001] \times [110], so that the incident beam polarizations were along those directions.

Each of the oxygen K-edge spectra shows distinct charge-transferred features: along c-axis, $pd\sigma : d_{z^2} \downarrow - O_Tp_z$ and $pd\pi : d_{xz} \downarrow - O_{pp}p_z$ with interval $\sim 1.6\text{eV}$; along ab-axis, $pd\sigma : d_{xy} \downarrow - O_{pp}p_x$ and small feature of $pd\sigma : d_{z^2} \downarrow - O_Tp_z$ with interval $\sim 1.3\text{eV}$.

These results could be compared with LDA+U calculation [2], and with Second Harmonic Generation(SHG) data. (e.g. [3])