Photoemssion study of doping dependent metal-insulator transition in Ru pyrochlores (Sm,Ca)$_2$Ru$_2$O$_7$ and (Sm,Bi)$_2$Ru$_2$O$_7$

J. Okamoto1, S.-I. Fujimori1, T. Okane1, A. Fujimori2, M. Abbate3, S. Yoshii4, and M. Sato5

1SPring-8, Japan Atomic Energy Research Institute, Hyogo 679-5148, Japan
2Department of Complexity Science and Engineering and Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
3Departamento de Fisica, Universidade Federal de Parana, Caixa Postal 19091, Curitiba PR 81531-990, Brazil
4Research Center for Materials Science at Extreme Condition, Osaka University, Osaka 560-8531, Japan
5Department of Physics, Nagoya University, Nagoya 464-8602, Japan

Pyrochlore-type Ru oxides A_2Ru$_2$O$_7$ show a variety of electrical and magnetic properties for different A-site ions [1]. This system is particularly interesting in that both filling-control and valence-control metal-insulator transition can be realized. Sm$_{2-x}$Ca$_x$Ru$_2$O$_7$ (0 $\leq x \leq$ 0.6) shows a metal-insulator transition at $x \sim 0.45$ with increasing Ca concentration, i.e., through doping holes to the Ru 4d t_{2g} band. Sm$_{2-x}$Bi$_x$Ru$_2$O$_7$ (0 $\leq x \leq$ 2.0) exhibits a Mott insulator-to-metal transition at $x \sim 0.6$ with increasing Bi concentration, i.e., through changing the Ru 4d t_{2g} band width. The Ru-O-Ru bond angle between RuO$_6$ octahedra changes from 132$^\circ$ (Sm end) to 139$^\circ$ (Bi end) in Sm$_{2-x}$Bi$_x$Ru$_2$O$_7$ [2,3].

In the present work, we have studied the electronic structures of Sm$_{2-x}$Bi$_x$Ru$_2$O$_7$ and Sm$_{2-x}$Ca$_x$Ru$_2$O$_7$ directly across the metal-insulator transition: core-level energy shift by x-ray photoemission spectroscopy (XPS) and spectral change in the valence band by ultra-violet photoemission spectroscopy (UPS) and x-ray absorption spectroscopy (XAS). By comparing the XPS and UPS spectra of Sm$_{2-x}$Bi$_x$Ru$_2$O$_7$ and Sm$_{2-x}$Ca$_x$Ru$_2$O$_7$, we discuss the mechanism of metal-insulator transition in those two systems. Spectral changes observed in the Ru 4d t_{2g} band are different for Ca and Bi doping but their intensity changes at the Fermi level reflect the tendency of their transport properties in both systems. The Sm$_{2-x}$Ca$_x$Ru$_2$O$_7$ system shows almost the same amount of monotonic energy shift in the Ru 3d core level, O 1s core level and the O 2p band, which is expected from the increase of hole density in the Ru 4d t_{2g} band. This also matches well with the results of O 1s x-ray absorption spectra. On the other hand, the Sm$_{2-x}$Bi$_x$Ru$_2$O$_7$ system doesn't show monotonic energy shift in each state, but shows spectral weight transfer within the Ru 4d t_{2g} band.